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Abstract

We propose an implicit scheme for the calculation of electromagnetic fields in the vicinity of short electron bunches

moving in a transversally bounded domain, as it has place in particle accelerators. The scheme is able to accurately

model curved boundaries and does not suffer from dispersion in direction of motion. It is based on splitting the discrete

curl operator in its transversal and longitudinal parts. Unlike previous conformal schemes the new method has a second

order convergence without the need to reduce the maximal stable time step of the conventional staircase approach. This

feature allows the usage of a moving mesh easily. Several numerical examples are presented and the algorithm is

compared to other approaches.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recent accelerator applications require beams of high intensities. As the beam intensity is increased, the

electromagnetic fields self-generated by the beam, particularly the fields generated by the beam interacting

with its surroundings (wake fields), can become sufficiently strong and lead to an instability and subsequent
beam loss [1]. The subject of collective instabilities in high energy accelerators has been studied since the late

1950s. In many cases finite difference methods can be applied successfully for calculation of wake fields in

accelerators [2,3]. However the existing computer codes experience severe problems in short range wake field

calculation for ultra short bunches [4]. Two main sources of such problems are the numerical grid dispersion

and the staircase geometry approximation of standard Cartesian or cylindrical computational grids.

As an effective cure of the dispersion problem a numerical scheme without dispersion in longitudinal

direction can be used as it is shown in [4,12] for the scalar wave equation. In order to develop a scheme
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without dispersion in longitudinal direction for the vectorial problem we split the curl operator in the

transversal and the longitudinal parts and use an implicit scheme based on the transversal part. The new

scheme is conditionally stable and allows using the ‘‘magic’’ time step equal to the space step in the lon-

gitudinal direction over velocity of light.

To overcome the staircase problem a conformal scheme described in paper [5] is adopted. Unlike other

conformal approaches this scheme is second order convergent without the need to reduce the maximal

stable time step of the conventional staircase method. This feature allows to use a moving mesh and the

‘‘magic’’ time step without a need for interpolation. With this choice the scheme allows for a non-deteri-
orating calculation of the solution for as long as necessary.

In Section 2 we state the problem. In the third and fourth part the implicit scheme is introduced. In the

fifth part the realization of the scheme for the rotationally symmetric case and a staircase approximation is

described, and then in the next section the conformal second order convergent scheme is developed. In the

seventh part a new algorithm for the indirect integration of the wake potential is introduced. Finally we

show several numerical examples and compare the scheme with other approaches.
2. Formulation of the problem

We consider a mixed Cauchy problem: for a bunch moving with the velocity of light c and characterized

by a charge distribution q find the electromagnetic fields ~EE; ~HH in a domain X which is bounded trans-

versally by a perfect conductor oX. The bunch introduces an electric current~jj ¼~ccq and thus we have to

solve for

r� ~HH ¼ o

ot
~DDþ~jj; r�~EE ¼ � o

ot
~BB;

r � ~DD ¼ q; r �~BB ¼ 0;

~HH ¼ l�1~BB; ~DD ¼ e~EE;

~EEðt ¼ 0Þ ¼ ~EE0; ~HHðt ¼ 0Þ ¼ ~HH0; x 2 X;

~nn�~EE ¼ 0; x 2 oX:

ð1Þ

The full electromagnetic fields ~DD; ~HH can be decomposed into the fields of the bunch in free space ~DD0; ~HH 0

and a scattered field

~DDsc ¼ ~DD� ~DD0; ~HH sc ¼ ~HH � ~HH 0: ð2Þ

The scattered field even in inhomogeneous regions can be presented by a vector potential ~AA:

~DDsc ¼ r�~AA; ~HH sc ¼ o

ot
~AA: ð3Þ

Substitution of the presentation (3) in the system (1) defines the problem formulation for the vector po-
tential ~AA:

r� e�1r�~AA ¼ � o2

ot2
l~AA�~jjsc; ~jjsc ¼ r� e�1~DD0 þ o

ot
l~HH 0;

r � l o

ot
~AA

�
þ ~HH 0

�
¼ 0; ~AAðt ¼ 0Þ ¼ ~AA0; x 2 X;

~nn �~AA ¼ �
Z t

�1
~nn � ~HH 0 ds; ~nn�r�~AA ¼ �

Z t

�1
~nn�r� ~HH 0 ds; x 2 oX;

ð4Þ
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where ~AA0 is an initial value of the vector potential which has to be consistent with the initial fields ~EE0; ~HH0 of

(1). In accelerator applications the studied structure usually is supplied by ingoing and outgoing pipes, and

the analytical solution in the pipe can be used as initial condition.

In the following only vacuum regions X will be considered, i.e., the term ~jjsc is equal to zero and the

excitation is imbedded in the boundary conditions (as is typical for scattered field formulations).
3. The finite integration technique

The new scheme will be introduced in context of the finite integration technique (FIT, [6,7]).

We consider Maxwell�s Eq. (1) in their integral form on a domain X � R3, with linear non-dispersive

constitutive relations:I
oS

~EE � d~ll ¼ � d

dt

Z
S

~BB � d~ss;
I
oS

~HH � d~ll ¼ d

dt

Z
S

~DD � d~ssþ
Z
S

~JJ � d~ss; 8S � X;I
oV

~DD � d~ss ¼
Z
V
qdv;

I
oV

~BB � d~ss ¼ 0; 8V � X;

~DD ¼ e~EE; ~BB ¼ l~HH ; 8x 2 X:

ð5Þ

Let us start by introducing a grid-based decomposition of the entire computation domain into two

dual cell complexes K and ~KK. We use here a three-dimensional cylindrical mesh in z; r;u coordinates
with corresponding numeration of the mesh by i; j; k indexes. Unlike in finite difference methods we do

not start by allocating field components but rather by allocating the electric voltage along mesh edges

and the magnetic flux through mesh cell facets as computational unknowns or state variables, respec-

tively:

e_# ¼
Z
L#

~EE � d~ll; h
_

# ¼
Z
~LL#

~HH � d~ll;

d
__

# ¼
Z
~SS#

~DD � d~ss; b
__

# ¼
Z
S#

~BB � d~ss; j
__

# ¼
Z
~SS#

~JJ � d~ss;

where # is a mesh multi-index and L#; S# 2 K; ~LL#; ~SS# 2 ~KK. Solving Faraday�s Law in integral form for the

front surface shown in Fig. 1 yields: �e_rijk � e_zijþ1k þ e_riþ1jk þ e_zijk ¼ �ðd=dtÞb
__

uijk. Note, that this
Fig. 1. Unit cell and state variables of the FIT.
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representation is still exact, as e_# is (by definition) the exact electric voltage along one edge of the surface,

and similarly b
__

# represents the exact value of the magnetic flux density integral over the cell surface.

If we compose column vectors e
_

and b
__

out of all voltage- and flux-components, we can write the

combination of all equations over all surfaces in an elegant matrix form as

Ce
_ ¼ � d

dt
b
__

:

The matrix C picks the affected components out of the long vector to make up the corresponding equation.

C is thus the discrete curl operator over the mesh K. On fu; v;wg-coordinate grids (like the cylindrical grid
chosen here) with an appropriate indexing scheme the curl matrix has an 3� 3 block structure:

C ¼
0 �Pw Pv

Pw 0 �Pu

�Pv Pu 0

0
@

1
A:

The two-banded, topological Pfu;v;wg-matrices take the role of discrete partial differential-operators [8].

The second important differential operator in Maxwell�s Eq. (5) is the div operator. In order to construct

a discrete divergence operator we integrate Maxwell�s equation
H
oV
~BB � d~ss ¼ 0 over the entire surface of a

mesh cell depicted in Fig. 1. From adding up the six relevant fluxes for each cell and by writing down all

such equations for the entire cell complex we obtain a discrete analogue to the div-equation:

Sb
__

¼ 0; S ¼ Pu Pv Pwð Þ:

After an equivalent procedure for the remaining Maxwell equations by means of a dual mesh ~KK we

obtain a set of four discrete equations replacing Maxwell�s equation on a grid doublet:

Ce
_ ¼ � d

dt
b
__

; ~CCh
_
¼ d

dt
d
__

þ j
__

;

Sb
__

¼ 0; ~SSd
__

¼ q:

ð6Þ

They are completed by the discrete form of the material relations (constitutive equations) which appear (in

the simplest linear case) as matrix equations

d
__

¼ Me e
_
; b

__

¼ Mlh
_
; j

__

¼ Mj e
_ ð7Þ

with the discrete permittivity matrix Me, the permeability matrix Ml, and the conductivity matrix Mj. In

the case of cylindrical grids (or, generally speaking, if the primary and the dual grid are orthogonal) all

material operators can be defined as diagonal matrices and thus are trivially symmetric positive

(semi)definite. Note that the material matrices contain both averaged material parameters and the lengths

and areas of the grid edges and faces, respectively.

The complete set of Eqs. (6) and (7) is referred to as Maxwell’s grid equations and the corresponding

discrete material equations.

One of the most important properties, relating the base mesh curl operator C and the dual mesh curl ~CC
operator, is the generalized symmetry

~CC ¼ CT : ð8Þ
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It follows directly from the duality of the pair of staggered meshes and can be easily proven by simple

topological considerations. However, this property is of outstanding importance if these topological ma-

trices are used as discrete curl-operators as in FIT, as we will show below.

From the topology of each the primary and the dual grid we have a second set of properties [2,7,8],

SC ¼ 0 and ~SS~CC ¼ 0; ð9Þ

which in the context of FIT can be interpreted as a discrete analogues to the vector-identity div curl ¼ 0.

Eq. (9) can be applied to prove many theorems concerning discrete electric and magnetic charges, as for

example the discrete continuity equation.

Finally we can define a discrete grad operator G with the properties

G ¼ �~SST and ~GG ¼ �ST : ð10Þ

From (9) and (10) we obtain CG ¼ 0 and ~CC~GG ¼ 0, the discrete analogues to curl grad ¼ 0. Eqs. (8)–(10)

together with the symmetry of the material matrices build the foundation of basically all further properties
of the discrete Maxwell equations as derived by the finite integration technique.

In the stability analysis we start with the time-continuous and space-discrete version of the discretization

method (for the lossless case with Mj ¼ 0):

Ce
_ ¼ � d

dt
Mlh

_
; ~CCh

_
¼ d

dt
Me e

_
; ! M�1

e
~CCM�1

l Ce
_ ¼ � d2

dt2
e
_
:

Using (8) and the squareroots M�1
e ¼ M�1=2

e M�1=2
e , M�1

l ¼ M�1=2
l M�1=2

l of the (symmetric positive defi-

nite) material matrices, the system matrix of this eigenvalue equation can be transformed into

M�1
e
~CCM�1

l C ¼ M�1=2
e M�1=2

l CM�1=2
e

� �T
M�1=2

l CM�1=2
e

� �
M1=2

e ;

and thus has only real and non-negative eigenvalues ki. That means that all eigensolutions of the spatial

discretization scheme expressed by this system matrix correspond to non-dissipative and non-growing

oscillations with a real-valued circular frequency xi ¼
ffiffiffiffi
ki

p
and the time-dependency e

_ðtÞ / Re ejxitf g.
This is the proof for the space stability of the time-continuous formulation of the Maxwell�s grid

equations. The next step in the stability analysis for the complete time domain algorithm is the stability of

the time-stepping scheme applied to this system.

In the time-continuous regime of our discretization as performed so far the vector potential and the

scattered field approach in (2) and (3) can be easily adopted by

h
_sc

¼ h
_
� h

_0

¼ d

dt
a
_
; a

_ðtÞ ¼
Z t

�1
h
_sc

ðsÞds; ð11Þ

where a
_
is a discrete vector potential.

Like finite difference schemes, the FIT allows the implementation of a moving-mesh approach [9]. Due to

causality reasons, no fields can ever precede the first particle of the bunch. A particle at any set position
within or behind the bunch will never be affected by anything that happens behind it, and thus these fields

need not to be computed. Reducing the numerical cost (both storage and CPU-time) significantly, the

moving mesh approach allows us to simulate very long structures. As a consequence, we can solve for the

wake fields of much shorter bunches than with the static mesh.

In the standard case of a staircase approximation of the boundary the results using a moving mesh are

fully equivalent to a stationary mesh, as no interpolation is necessary. An important prerequisite, however,
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is the usage of the �magic� time step cDt ¼ Dz which is adapted to the velocity v ¼ c of the bunch. This may

come into conflict with the stability constraints of the time integration and will be analyzed below.
4. Implicit scheme

In the following we are interested in the situation when the longitudinal dimension (z-dimension) of the

domain X is infinite or much longer than the transverse size of the domain. This situation is typical in
accelerator applications and forces us to look for a scheme with preferable dispersion property in the

longitudinal direction.

To establish an implicit time-stepping algorithm we can approximate the time derivatives in (6) by

central difference expressions with h
_n

¼ h
_
ðtnÞ and tn ¼ t0 þ nDt:

h
_nþ1

¼ h
_n

� DtMl�1Ce
_nþ1=2

; e
_nþ1=2 ¼ e

_n�1=2 þ DtMe�1 CT
1

�
h
_

h
_n

 
þ CT

2 h
_n

� j
__
n
!
;

�
h
_

h
_n

� hh
_nþ1

þ ð1� 2hÞh
_n

þ hh
_n�1

;

ð12Þ

where we have split the discrete curl operator ~CC ¼ CT into the transversal operator CT
1 and the longitudinal

operator CT
2 , and h is a numerical parameter to be defined. For our cylindrical fz; r;ug-grid the operators

have the form

C1 ¼
0 �Pu Pr

Pu 0 0

�Pr 0 0

0
@

1
A; C2 ¼

0 0 0

0 0 �Pz

0 Pz 0

0
@

1
A:

As easy to see the scheme (12) differs from the conventional ‘‘leap-frog’’ scheme [10] by usage of averaged

value
�
h
_
h
_n

in the second relation. This ‘‘trick’’ changes the dispersion relation and the stability condition of

the scheme as required and described below.

From Eqs. (11) and (12) we obtain an implicit three level numerical scheme for the vector potential a
_n

:

ðIþ hTÞa_nþ1 ¼ 2a
_n � a

_n�1 � T ð1
�

� 2hÞa_n þ ha
_n�1

�
� La

_n þ f
_n

;

T ¼ Dt2Ml�1CMe�1CT
1 ; L ¼ Dt2Ml�1CMe�1CT

2 ;

f
_n

¼ �ðIþ hTÞa_nþ1

0 þ 2a
_n

0 � a
_n�1

0 � T ð1
�

� 2hÞa_n

0 þ ha
_n�1

0

�
� La

_n

0;

a
_n

0 ¼
Z tn

�1
h
_

0 ds:

ð13Þ

This scheme approximates the problem (4). The local approximation error in homogeneous parts of the

domain X is of second order in space and time OðkDhk2 þ Dt2Þ, Dh ¼ ðDz;Dr;DuÞ. The global
approximation error and the rate of convergence depend critically on the approximation of material

interfaces (boundary conditions) and will be considered later. For vacuum domains X the vector f
_n

approximates only the boundary conditions on oX, and its components corresponding to cells inside X
are equal to zero. The relations (13) are defined on dual grid complexes, which cover the domain X and

usually contain cells which do not belong to the domain X. To install the updating Eq. (12) on the

complete dual grid complexes we use a modification of the entries of the material matrices Me�1 ;Ml�1

conserving their symmetry and positive semi-definiteness as described in the following sections.
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In the above relations the vector a
_n

0 is presented as an improper time integral of the magnetic field of a

relativistic bunch in free space [1]. It is geometry free and depends only on the longitudinal charge dis-

tribution kðz� ctÞ (see relation (15)). Hence, it has to be calculated only once at the beginning of the

simulation. Since the charge distribution equal to zero at infinity the time integral can be avoided com-

pletely by using the relation

o

oz
~AA0ðz� ctÞ ¼ � 1

c
o

ot
~AA0ðz� ctÞ; ~AA0ðz� ctÞ ¼

Z t

�1
~HH 0ðz� csÞds;

which allows to convert the space derivative to a time derivative.

From the results of the previous section it follows that all eigensolutions of the spatial discretization

correspond to non-dissipative and non-growing oscillations that ensure the late time stability of the scheme.
The next step is the stability of the time-stepping scheme. Our scheme is implicit in the transversal plane and

explicit in z-direction. From a Fourier stability analysis a sufficient spectral stability condition in free space

can easily be obtained

cDt6Dz; 0:256 h; ð14Þ

combining two conditions: first, the stability condition of the explicit scheme for the one-dimensional

(longitudinal) wave equation, and second the stability condition for the weighted implicit three level

scheme. Note, that the condition (14) does not take into account approximation of boundary conditions.

With the time step cDt ¼ Dz allowed by condition (14) the scheme (13) has no dispersion in the longi-
tudinal direction (in analogy to explicit schemes for the one-dimensional wave equation [10]) and a moving

mesh can be employed easily [9].

To reduce the dispersion in the transversal direction we should use the minimal value of h. Due to the

fact that the transverse dimensions of the domain X are much smaller than the longitudinal one, the zero

dispersion property in the direction of the motion allows for a non-deteriorating calculation of the solution

for as long as necessary. This has been confirmed by numerical examples (see also [4]).
5. Staircase realization for rotationally symmetric geometry

In this section we describe the realization of the scheme for the case of a rotationally symmetric geometry

in a standard staircase approximation of the boundary, which can be realized by diagonal material matrices
Ml�1 ;Me�1 .

In the staircase approximation the domain X is approximated by the cell complex Xh � K, and the

matrices Me�1 ;Ml�1 are diagonal ones with the elements (without double indices for simplicity of notation)

ðêepijkÞ�1 ¼ e
~SSpijk
Lpijk

� ��1

if Lpijk 2 Xh n oXh;

0 if Lpijk 62 Xh n oXh;

(

ðl̂lpijkÞ
�1 ¼ l Spijk

~LLpijk

� ��1

if Spij 2 Xh n oXh;

0 if Spijk 62 Xh n oXh;

(

with i ¼ 1; . . . ;Nz, j ¼ 1; . . . ;Nr, k ¼ 1; . . . ;Nu, p ¼ z; r;u and the face areas and edge lengths of the primary

and secondary grid S; L; ~SS; ~LL, respectively.
For a bunch moving at speed of light c with an offset a from and parallel to the axis of a rotationally

symmetric structure, the source current~jj can be represented as
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~jj ¼~cckðz=c� tÞdðr � aÞ
pa

X1
m¼0

cosmu
1þ dm0

; ð15Þ

where kðsÞ is the longitudinal charge distribution and m is the azimuthal mode number.
The numerical scheme (13) for an azimuthal mode number m has the form

�M�1
l�1
z
Dt�2 a

_nþ1

z

�
� 2a

_n

z þ a
_n�1

z

�
¼ mMe�1

r
PT

z a
_n

u � PrMe�1
u
PT

z a
_n

r þ PrMe�1
u
PT

r

�
þ m2Me�1

r

�
�
a
_
a
_n

z � f
_n

z ;

�M�1
l�1
r
Dt�2 a

_nþ1

r

�
� 2a

_n

r þ a
_n�1

r

�
¼ PzMe�1

u
PT

z a
_n

r þ m2Me�1
z

�
a
_
a
_n

r

�
� PzMe�1

u
PT

r
�
a
_
a
_n

z þ mMe�1
z
PT

r
�
a
_
a
_n

u

�
� f

_n

r ;

�M�1
l�1
u
Dt�2 a

_nþ1

u

�
� 2a

_n

u þ a
_n�1

u

�
¼ PzMe�1

r
PT

z a
_n

u þ PrMe�1
z
PT

r
�
a
_
a
_n

u

�
þ mPzMe�1

r

�
a
_
a
_n

z þ mPrMe�1
z

�
a
_
a
_n

r

�
� f

_n

u;

ð16Þ

where �a_a_n
p � ha

_nþ1

p þ ð1� 2hÞa_n

p þ ha
_n�1

p , p ¼ r;u; z, and we used the fact that Pu ¼ mI [11].

When a bunch moves along the axis, only the~AAu component of vector potential is different from zero and
our scheme with h ¼ 0:5 is reduced to the staircase scheme of the paper [12].

The material matrices Ml�1 ;Me�1 in a staircase approximation of the geometry are diagonal and for

higher order modes it is possible to use the divergence relation

a
_
u ¼ m�1Ml�1

u
PrM

�1
l�1
r
ða_r

�
þ a

_0

r Þ þ PzM
�1
l�1
z
ða_z þ a

_0

z Þ
�
� a

_0

u ð17Þ

to eliminate the au component from the equations for the ar; az components:

�M�1
l�1
r
Dt�2 a

_nþ1

r

�
� 2a

_n

r þ a
_n�1

r

�
¼ PzMe�1

u
PT

z a
_n

r þ ðMe�1
z
PT

r Ml�1
u
PrM

�1
l�1
r

�
þ m2Me�1

z
Þ�a_a_

n

r

þ ðMe�1
z
PT

r Ml�1
u
PzM

�1
l�1
z
� PzMe�1

u
PT

r Þ
�
a
_
a
_n

z

�
� f

_0n

r ;

�M�1
l�1
z
Dt�2 a

_nþ1

z

�
� 2a

_n

z þ a
_n�1

z

�
¼ Me�1

r
PT

z Ml�1
u
PzM

�1
l�1
z
a
_n

z þ ðMe�1
r
PT

z Ml�1
u
PrM

�1
l�1
r

� PrMe�1
u
PT

z Þa
_n

r þ ðPrMe�1
u
PT

r þ m2Me�1
r
Þ�a_a_

n

z � f
_0n

z :

ð18Þ

The system (18) does not contain static solutions and its dimension is reduced by 1/3 in its rank. It can be

solved easily. At the first step we calculate the vector a
_nþ1

z and have to solve a linear system with the matrix

Iþ Dt2hMl�1
z
PrMe�1

u
PT

r þ m2Dt2hMl�1
z
Me�1

r
. This matrix is a block diagonal one with Nz blocks. Each block

is a three-banded matrix of size Nr and can be resolved by OðNrÞ operation. Now we can use the component

a
_nþ1

z in the equation for the component a
_nþ1

r and have to solve a linear system with the matrix

Iþ Dt2hMl�1
r
Me�1

z
PT

r Ml�1
u
PrM

�1
l�1
r
þ m2Dt2hMl�1

r
Me�1

z
. This matrix is again a block diagonal one with Nz

blocks. Each block is also a three-banded matrix of size Nr and can be resolved by an OðNrÞ operation.
The above consideration shows that the implicit solution of the system (18) requires only OðNrNzÞ op-

erations, and the numerical complexity of the new algorithm is of the same order of operations as the

explicit FIT/FDTD method used in codes like TBCI [13], MAFIA [7].
6. Second order convergent scheme

With the standard staircase approximation of curved boundaries we will not obtain a second order

scheme in the general case. To develop a second order convergent scheme in the Lh
2 grid norm we adopt the



Fig. 2. Curved PEC-boundary in Cartesian mesh.

I. Zagorodnov et al. / Journal of Computational Physics 191 (2003) 525–541 533
approach of the paper [5], where a new conformal scheme for explicit FDTD algorithm was constructed
and its second order convergence was proven analytically and by numerical experiments. It was also shown

numerically that unlike the scheme derived in [14] the new scheme is stable without the need to reduce the

maximum stable time step due to small ‘‘cut’’ cells near the boundary.

In the conformal approach we allow the cells of the grid to be only partially filled by a perfectly electric

conducting (PEC) material with an arbitrarily shaped interface. Since the area of the cells near the

boundary is reduced, the time step in the conformal scheme [14] has to be reduced, too.

Consider Fig. 2(left). To calculate the flux b
__

uijk in standard conformal schemes only the non-zero

voltages e_riþ1jk and e_zijk are used. Apparently, this information is not sufficient to do the same ‘‘big’’ time
step in this small cell, which we can use for cells inside the calculation domain. The idea of the method

presented here is to use also the information from the adjacent cells to enlarge the local curl-operation and

thus to enable the usage of the same time step as before.

To this end, we will build an approximation of the virtual cell shown by the dashed line in Fig. 2(left),

which is realized by non-diagonal elements in the material matrix Ml�1 for boundary cells only. This means,

that inside the domain we can still use the conventional FIT algorithm. The update equations of the electric

components will not be changed at all compared to standard conformal scheme [14].

As a consequence, only the material matrix Ml�1 of the algorithm described in [5] has to be modified to
derive the stable algorithm without reducing the time step. The original material matrix Ml�1 is a com-

position of diagonal matrices: Ml�1 ¼ ~RRM, M ¼ kl�1
pijkk, ~RR ¼ k~rr�1

pijkk, lpijk ¼ lspijk=Spijk, ~rrpijk ¼ Spijk=~LLpijk ,

where s denotes a reduced cell area [5]. A new material matrix ~MMl�1 is composed by the relation
~MMl�1 ¼ VTDV , where D ¼ ~RRU > 0 is a diagonal matrix, responsible for the order of the approximation,

and V is a non-diagonal matrix of weights. In [5] we described the construction of the matrix ~MMl�1 for an

explicit algorithm. Since the scheme here is implicit in the transversal direction we use the weights only in

longitudinal direction and only for facets in zr and zu planes.

In the following we will consider the domain X with the material parameters of free space l ¼ 1; e ¼ 1
and decomposed by equidistant grid complex with the mesh parameter L ¼ Lrijk ¼ Lzijk.

To simplify the notation, we consider only one the zr-plane and omit the index k for the u-direction. At

first we will build an auxiliary matrix V0:

v0uij;uij ¼ 1ð Þ;
v0uij;uiþ1j ¼ maxð0; a� luijeriþ1jÞð Þ; v0uij;ui�1j ¼ maxð0; a� luijerijÞð Þ:
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Here, a is a constant parameter equal to 0.99 [5]. It follows from the relations above that only cells near the

boundary will give a contribution to non-diagonal elements of the matrix V0.

From the matrix V0 we will build a matrix V:

vuij;ui1j1 ¼ v0uij;ui1j1

.X
i2j2

v0ui2j2;ui1j1 :; ð19Þ

where the sum is taken over all elements of the corresponding column.

The diagonal matrix U has elements

uuij ¼
X
i1j1

vuij;zi1j1lui1j1

 !�1

; ð20Þ

where the sum is taken over all elements of the corresponding row.

For a geometric interpretation of the weights defined by this procedure we consider the simple case in

Fig. 2(right), where the interface to the PEC material is parallel to the ru-coordinate plane, with a vacuum

to PEC-ratio of b < a. This leads to

luij ¼ ezij ¼ ezijþ1 ¼ b; eriþ1j ¼ eriþ2j ¼ eziþ1j ¼ eziþ1jþ1 ¼ 1;

and all entries of the corresponding row of V0 are zero except for v0uij;uiþ1j ¼ a� b . From (19) and (20) we

obtain

vuij;uiþ1j ¼
a� b

1þ a� b
; vuij;uij ¼ 1; uuij ¼

1

bþ vuij;uiþ1j
:

Returning to Fig. 2(right), and remembering that each of the magnetic flux-components involved is cal-

culated by a local curl of electric voltages, we can now see, that this weighting procedure is indeed
equivalent to a local curl around the virtual cell with step size u�1

uij using interpolated electric voltages.

Finally the obtained flux is correlated with the enlarged area of this virtual cell to transform it in a magnetic

voltage.

A similar, but more complicated geometric interpretation is possible also for the general case (of arbi-

trarily shaped interface planes), and again it can be shown, that our formulas define interpolated local curls

referring to virtual cells.

Relations (19) and (20) allow us to derive (see [5]) the order of the local approximation error in the

material relations. We consider again the situation when only the weight vuij;uiþ1j for one adjacent cell is
unequal to zero,

~MMl�1 ¼ V� ~RRUV;

ð~RRUVbÞuij ¼
b
__

uijvuij;uij þ b
__

uiþ1jvuij;uiþ1j

l̂luijvuij;uij þ l̂luiþ1jvuij;uiþ1j
¼ h

_

uij þOðL2Þ;

ð ~MMl�1bÞuij ¼ h
_

uij þOðL2Þ:

ð21Þ

The last relation follows from (19), which means that the sum of all elements of any row of the matrix V� is

equal to one. Thus, we have at least a first order local approximation in the material relations near the
boundary, and globally a second order convergent scheme in Lh

2 grid norm – if it is stable.

For spatial stability, it follows directly from (21) that the material matrix ~MMl�1 is symmetric and the

matrix A ¼ c2 ~MMl�1CMe�1CT has only real non-negative eigenvalues.
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In our conformal scheme the material matrix ~MMl�1
r
is non-diagonal, which makes the usage of divergence

relation (17) too expensive. For this reason we will describe next a modified approach based directly on the

system (16).

In the first step we calculate the vector a
_nþ1

z and have to solve a linear system with the matrix

Iþ Dt2h ~MMl�1
z
PrMe�1

j
PT

r þ m2Dt2h ~MMl�1
z
Me�1

r
. Like in the staircase approximation this matrix in the conformal

scheme is a block diagonal one with Nz blocks. Each block is a three-band matrix of size Nr and can be

resolved by an OðNrÞ operation.
Now we can use the component a

_nþ1

z in the equations for the components a
_nþ1

r ; a
_nþ1

u which are coupled.
We have to solve a system with the matrix

Iþ Dt2hm2 ~MMl�1
r
Me�1

z
mh ~MMl�1

r
Me�1

z
PT

r

mh ~MMl�1
u
PrMe�1

z
Iþ Dt2h ~MMl�1

u
PrMe�1

z
PT

r

 !
; ð22Þ

which is a block diagonal one with Nz blocks.

Now as the first step we consider an algorithm for the case of diagonal material matrices (as it occurs in
the staircase approximation) and then we show how to use this algorithm for the conformal scheme with

non-diagonal material matrix ~MMl�1
r
. In the case of diagonal matrix ~MMl�1

r
each block of matrix (22) is of size

2Nr and has a seven-banded structure as shown in Fig. 3. Each block can be reduced to a three diagonal

type by an OðNrÞ using Gauss elimination (see Fig. 3). This means its resolving takes only OðNrNzÞoper-
ations and the algorithm requires the same order of operations as the explicit FDTD method.

For the common case of non-diagonal matrix ~MMl�1
r
we use an iterative algorithm based on the splitting of

the transversal operator T . If we note by ~MM0
l�1 the diagonal part of the material matrix ~MMl�1 , the iterative

scheme reads

ðIþ hT0Þða_nþ1Þi ¼ f
_00n

� hT1ða_nþ1Þi�1
; i ¼ 1; 2; . . . ;

f
_00n

¼ Tðð1� 2hÞa_n þ ha
_n�1Þ þ 2a

_n � a
_n�1 � La

_n þ f
_n

;

T0 ¼ Dt2 ~MM0
l�1CMe�1CT

1 ; T1 ¼ Dt2ð ~MMl�1 � ~MM0
l�1ÞCMe�1CT

1 ;

ð23Þ

where the operator T1 is of very low rank. As the start value of the unknown vector we use a solution of the

system

ðIþ hT0Þ
�
a
_nþ1

�0
¼ �T0 ð1

�
� 2hÞa_n þ ha

_n�1
�
þ 2a

_n � a
_n�1 � ðT1 þ LÞa_n þ f

_n
: ð24Þ

Like (23), the expression (24) is an approximation of the problem (4) of order OðkDhk2 þ Dt2Þ,
Dh ¼ ðDz;DrÞ, but unstable for cDt ¼ Dz. In all our numerical examples it was sufficient to perform one
Fig. 3. Reduction of the matrix.
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iteration step (23) to obtain a stable solution. For both Eqs. (23) and (24) we have to invert the matrix

Iþ hT0 and consequently the algorithm described above for a seven-band matrix can be applied.

In all examples shown in the next section we use the scheme (23) and (24) in combination with a moving

mesh.
7. Indirect method for the calculation of the wake potential

For a bunch described by the source current (15) the longitudinal wake potential at mode m is defined by

[13]

W m
k ðr; sÞ ¼ � 1

Q

Z 1

�1
Esc
z ðr; z; tðz; sÞÞdz; Q ¼

Z 1

�1
kðzÞdz; ð25Þ

where s is the distance behind a given origin z0 ¼ vt in the exciting bunch, and

tðz; sÞ ¼ ðzþ sÞ=v:

As was shown in [16] the improper integral (25) for cavity-like structure can be reduced to a proper

integral over the gap of the cavity. In [17] the above result was generalized by showing that the longitudinal

and transverse wake potentials, at all orders m in the multi-polar expansion, can be expressed as integrals

over the wake fields along any arbitrary contour spanning the structure longitudinally.

To calculate the wake potential W m
k we use a modification of the indirect method described in [17].

The main feature of our method is that (like in the direct method) we integrate only the
�eezðr; z; sÞ ¼ Esc

z ðr; z; tðz; sÞÞ component of the scattered electromagnetic field along a straight line Lr0 at radius

r0, and use other field components only at the end of the structure. Note, that in the original method [17] we

have to integrate a linear combination of �eesz and �bbsz components along Lr0 .

As it was shown in [17], for each mode m the differential forms

xS ¼ rm½�eer þ c�bbu � �eeu þ c�bbr�dr þ rm½�eez þ c�bbz�dz;
xD ¼ r�m½�eer þ c�bbu þ �eeu � c�bbr�dr þ r�m½�eez � c�bbz�dz

are closed. Hence, we can write

QW m
k ¼ �

Z 1

�1
�eez dz ¼ �

Z
Lr0

�eez dz�
Z
C0

�eez dz;

Z
C0

�eez dz ¼ � 1

2

Z
C0

rm0 xD

��
þ r�m

0 xS

�
� b
am

Z
C15

xS

�
; b ¼ a

r0

� �m
� a

r0

� ��m
; C15 ¼

[5
i¼1

Ci;

where a is the radius of the outgoing beam tube, and the other parameters are shown in Fig. 4. For a
perfectly conducting geometry we easily obtain from the above relations:Z

C0

�eez dz ¼ � 1

2

Z
C1

rm0 xD

��
þ r�m

0 xS �
b
am

xS

�
� b
am

Z
C5

xS

�

¼ � 1

2

Z r0

0

bðr=aÞm½�eer þ c�bbu � �eeu þ c�bbr�dr �
1

2

Z a

r0

ððr0=rÞm þ ðr0=rÞ�m � bðr=aÞmÞ½�eer þ c�bbu�dr

� 1

2

Z a

r0

ððr0=rÞm � ðr0=rÞ�m þ bðr=aÞmÞ½�eeu � c�bbr�dr:



Fig. 4. Contours for the indirect integration.
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Obviously the infinite contour C0 can be replaced by the finite contours C1;C5. The transversal wake

potential W m
? can be found from the longitudinal one by applying the Panowsky–Wenzel theorem [18].

In the following numerical examples we use integral parameters [15]: the loss factor Lm
k and the kick

factor Lm
? given by formulas

Lm
k ¼

Z 1

�1
W m

k ðsÞkðsÞds; Lm
? ¼

Z 1

�1
W m

? ðsÞkðsÞds:
8. Numerical examples

Finally we discuss the results of numerical computations for several test problems. The new algorithm

has been implemented in a code called ECHO.
Fig. 5 shows the relative error of the loss factor d ¼ jL0

k � �LL0
kj=�LL0

k for a Gaussian bunch with RMS r ¼
0:5 cm passing through a pillbox (Fig. 5 left) and a spherical resonator (Fig. 5 right). The error is given over

the number of mesh steps per bunch length r=h, where h denotes the equal mesh step h ¼ Dz ¼ Dr in both

directions. The pillbox has the length 1.8 cm and radius 0.9 cm. The sphere has the diameter 1.8 cm. The

analytical loss factor �LL0
k is equal to 0:589459V =pC for the pillbox and 0:152446V =pC for the sphere. The

error for a computation with a stationary mesh is demonstrated by lines. The results for the moving mesh
Fig. 5. The relative error of monopole loss factor for a pillbox (left) and a sphere (right) vs. number of mesh steps per RMS bunch

length. The solid lines show results for a stationary mesh, the triangles and circles present results for the moving mesh.
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are shown by triangles and circles. The moving mesh in this and the following examples, except the last one

in Fig. 10, covers the Gaussian bunch longitudinally in the range from �5r to 5r. As expected, the staircase

scheme shows a first order rate of convergence and the conformal scheme achieves the second order. Note,

that in the pillbox example the mesh was not fitted to the boundary surface as in that case the conformal

and staircase approximations would coincide.

As a next test example we use a circular collimator structure shown in Fig. 6 (with inner radius b not

presented in the figure). Fig. 7 demonstrates thewake potential for the collimatorwith parameters a ¼ 40mm,

b ¼ c ¼ 10 mm, L ¼ 2445 mm and the bunch with RMS length r ¼ 0:1 cm. The solution is compared to the
analytical estimation [19].

The conformal scheme shows a second order convergence and gives results of high accuracy with only 5

mesh steps per r in all tests. Note that the staircase scheme with 5 steps per r leads to an relative error in

excess of 300%.

Next, we show results for the dipole wake (m ¼ 1) and compare ECHO to results obtained by ABCI [20]

(finite difference time domain method with triangular approximation of the boundary). In the following

numerical examples we use a ¼ 35 mm and b ¼ c ¼ 2 mm, where b is an interior radius of the collimator.

In Fig. 8(left) the transversal dipole loss factor L1
? for the collimator with L ¼ 10 cm is shown for dif-

ferent mesh resolutions r=h, where r ¼ 1 mm for the Gaussian bunch and h is the mesh step. The error

compared to the reference value (finest mesh resolution) is also shown in the figure. The dashed lines show
Fig. 6. The geometry of the collimator.

Fig. 7. The monopole wake potential of a collimator. The wakes calculated with different mesh resolutions r=h are compared to the

analytical estimation. The results for the staircase scheme show a considerable error. Three curves for the conformal scheme follow the

analytical estimation.



Fig. 8. The transverse dipole loss factor L1
? for the collimators with L ¼ 10 cm (left) and L ¼ 20 cm (right). The solid lines show the

results from the code ABCI and the dashed lines display the results from the ECHO code. The relative errors are given regarding the

reference value (marked as ref. on the graphs) calculated by ECHO with the finest mesh.

Fig. 9. The transversal dipole wake function for the collimators with L ¼ 20 cm (left) and L ¼ 100 cm (right). The solid curves show

the results from the code ABCI and the dashed lines represent the results from the code ECHO. The low curve (left) outlines the charge

distribution in the Gaussian bunch.

I. Zagorodnov et al. / Journal of Computational Physics 191 (2003) 525–541 539
results for the ECHO and the solid ones for ABCI 9.2.1 [20]. In Fig. 8(right) the transversal dipole loss

factor L1
? for the collimator with L ¼ 20 cm is shown.

Fig. 9 shows the transversal dipole wake potential W 1
?ðsÞ for collimators with L ¼ 20 cm and L ¼ 100 cm.

The solid curves show results for ABCI and the dashed ones show results for the new scheme.
From the above examples we see that the absolute error for the new code ECHO remains approximately

on the same level independently from the length of the collimator. The reference code ABCI demands a

much more dense mesh for the same accuracy, strongly depending on the collimator length. In the last

example even with 40 points on r the error for ABCI is in excess of 100%.

Finally, we show in Fig. 10 the dipole wake potentials of a Gaussian bunch with r ¼ 1 mm for the

TESLA cryomodule of total length 	11 m [21] containing eight nine cell cavities and nine bellows as shown

in Fig. 11. The moving mesh in the last example covers the bunch longitudinally in the range from �5r to

100r. The length of the moving mesh is only 0.105 m which allows to reduce drastically the computational
demands (storage and CPU time) compared to the stationary mesh of total length 	11 m.

As our experience shows, the scheme allows to calculate the wake fields of ultra-short bunches

(r 	 25 lm) in accelerator structures of several tens meter length on a standard PC.



Fig. 11. The geometry of the TESLA cryomodule (left) and the TESLA cavity (right).

Fig. 10. The dipole wakes for the TESLA cryomodule and Gaussian bunch with RMS length r ¼ 1 mm.

540 I. Zagorodnov et al. / Journal of Computational Physics 191 (2003) 525–541
9. Conclusions

A new implicit scheme for the calculation of electromagnetic fields in the vicinity of relativistic electron

bunches was introduced. As shown by several numerical examples the scheme is able to model curved

boundaries with high accuracy and allows for a non-deteriorating calculation of the field solution for very
long times. The high overall accuracy of the scheme was demonstrated for realistic collimator problems.

The scheme allows to use a moving mesh and thus to calculate wake fields of very short bunches for a range

of problems, where presently available codes experience severe problems.
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